Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.Б.07 Физика									
наименование	дисциплины (модуля) в соответствии с учебным планом									
Направление подгото	вки / специальность									
22.03.02 МЕТАЛЛУРГИЯ										
Направленность (прос	Направленность (профиль)									
	22.03.02 МЕТАЛЛУРГИЯ									
Форма обучения	заочная									
Форма обучения	заочная									
Год набора	2019									

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили		
	Смолин С.В.	
	BODY/JOOTI WILLIAMS BLI MONAGELI	

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Ознакомление студентов с современной физической картиной мира; приобретение навыков экспериментального исследования физических явлений и процессов; изучение теоретических методов анализа физических явлений; обучение грамотному применению положений фундаментальной физики к научному анализу ситуаций, с которыми бакалавру/специалисту придется сталкиваться при создании новых технологий; выработка у студентов основ естественнонаучного мировоззрения.

1.2 Задачи изучения дисциплины

Задачи изучения дисциплины

- Сформировать у студентов представление о месте физики в естественнонаучной картине мира.
- Сформировать представления об основных физических явлениях, теориях и законах и пределах их применимости.
- Развить умение объяснять физические явления и законы классической и современной физики для грамотного научного анализа ситуаций, с которыми бакалавру/специалисту придётся сталкиваться при создании или использовании новой техники и новых технологий.
- Способствовать овладению приёмами решения конкретных задач из разных областей физики, позволяющими студентам в дальнейшем решать практические задачи.
- Сформировать навыки проведения экспериментальных исследований по стандартным методикам, использования основных приёмов обработки, представления и анализа экспериментальных данных.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине
ОПК-1: готовностью использо	вать фундаментальные общеинженерные знания
ОПК-1: готовностью	• основные физические величины и
использовать	физические константы, их опреде-ление, смысл,
фундаментальные	способы и единицы их измерения;
общеинженерные знания	• основные физические явления и основные
	законы физики;
	• фундаментальные физические опыты и их
	роль в развитии науки;
	• истолковывать смысл физических величин и
	понятий;
	• указать, какие законы описывают данное
	явление или эффект;
	• использовать основные законы
	естественнонаучных дисциплин в про-
	фессиональной деятельности
	• использования основных общефизических

законов и принципов в важнейших практических приложениях;

- обработки и интерпретирования результатов эксперимента;
- применения естественнонаучных принципов в профессиональной деятельности.

ПК-3: готовностью использовать физико-математический аппарат для решения задач, возникающих в ходе профессиональной деятельности

системе СИ;

ПК-3: готовностью использовать физико-математический аппарат для решения задач, возникающих в ходе профессиональной деятельности

физических законов в решении прикладных инженерной деятельности.

границы применимости законов физики в важнейших практических приложениях; назначение и принципы действия важнейших физических приборов; записывать уравнения для физических величин в

работать с приборами и оборудованием современной физической лаборатории;

использовать различные методики физических измерений и обра-ботки экспериментальных данных;

• применения физических принципов в инженерной деятельности;

правильной эксплуатации основных приборов и оборудования современной физической лаборатории;

• интерпретации полученных результатов исследования в решении инженерных задач.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется с применением ЭО и ДОТ

URL-адрес и название электронного обучающего курса: Физика -1 http://e.sfu-kras.ru/course/view.php/id=1414

Физика – 2 http://e.sfu-kras.ru/course/view.php/id=1415

2. Объем дисциплины (модуля)

			(Сем	ест	p	
	Всего,						
Вид учебной работы	зачетных единиц (акад.час)	1	2	3	4	5	6

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.								
№ п/п	Молупи темы (разлепы) лисциплины		ятия онного ппа	Занятия семин Семинары и/или Практические		Лабораторные работы и/или			ятельная ак. час.	
		Всего	В том числе в ЭИОС	Всего	ятия В том числе в ЭИОС	Практ Всего	икумы В том числе в ЭИОС	Всего	В том числе в ЭИОС	
1. M	ОДУЛЬ 1		I.							
	1. Раздел 1. Кинематика поступательного и вращательного движения.	2								
	2. Кинематика поступательного и вращательного движения. Просмотр видеосюжетов с разбором и анализом видов движений.			2						
	3. Измерение объемов тел правильной геометрической формы.					2				
	4. Кинематика поступательного и вращательного движения.							18		
	5. Раздел 2. Динамика поступательного движения. Энергия. Работа.	2								
	6. Динамика поступательного движения.			2						
	7. Закон сохранения импульса. Столкновение частиц. Работа силы. Мощность. Закон сохранения энергии.			2						

8. Изучение законов кинематики и дина-мики на машине Атвуда.			2		
9. Изучение закономерностей упругого и неупругого ударов.			2		
10. Определение скорости пули с помощью баллистического маятника.			2		
11. Закон сохранения импульса. Столкновение частиц. Работа силы. Мощность. Закон сохранения энергии.				4	
12. Раздел 3. Динамика вращательного движения.	2				
13. Динамика вращательного движения. Момент инерции твердого тела. Момент импульса.					
14. Динамика вращательного движения. Момент инерции твердого тела. Момент импульса.				36	
15. Раздел 4. Механические колебания.	2				
16. Гармонические колебания. Сложение колебаний. Просмотр видеосюжетов с разбором и анализом сложений колебаний.					
17. Гармонические колебания. Сложение колебаний.				36	
18. Раздел 5. Элементы механики сплошных сред.	1				
19. Стационарное движение жидкости. Упругие деформации твердого тела.					
20. Стационарное движение жидкости. Упругие деформации твердого тела.				36	
21. Раздел 6.Релятивистская механика.					
22. Релятивистская кинематика и динамика.					
23. Релятивистская кинематика и динамика.				6	
2. МОДУЛЬ 2				 	

	_	1	1			
1. Раздел 1. Молекулярно-кинетическая теория газов.						
2. Уравнение состояния идеального газа. Молекулярно- кинетическая теория. Распределение Максвелла. Распределение Больцмана. Просмотр видеосюжетов и анализом применения законов						
3. Уравнение состояния идеального газа. Молекулярно- кинетическая теория. Распределение Максвелла. Распределение Больцмана.					2	
4. Раздел 2. Основы термодинамики.						
5. Первое начало термодинамики и его применение к изопроцессам и адиабатическому процессу. Теплоемкость идеального газа. Круговые процессы. Энтропия. Цикл Карно.						
6. Определение отношения теплоемко-стей Cp/CV воздуха методом Клемана-Дезорма.						
7. Определение коэффициента вязкости жидкости методом Стокса						
8. Уравнение Ван-дер-Ваальса						
9. Определение скорости звука в воздухе методом стоячей волны						
10. Первое начало термодинамики и его применение к изопроцессам и адиабатическому процессу. Теплоемкость идеального газа. Круговые процессы. Энтропия. Цикл Карно.					7	
11. Раздел 3. Реальные газы, жидкости и твердые тела.						
12. Поверхностная энергия и поверхностное натяжение. Капиллярные явления.						

						8	
<u>'</u>	•	1	1	•	•		
2							
		2					
				2			
						44	
		2					
				2			
						36	
		2					
				2			
						10	
2							
			2	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 2 44 44 2 2 36 36 2 10

12. Закон Ома для однородного участка цепи. Закон Ома для полной цепи. Закон Джоуля-Ленца. Тепловая мощность. Правила Кирхгофа. Просмотр видеосюжетов и анализом применения законов.		2			
13. Применение правила Кирхгофа для разветвленных цепей.			2		
14. Изучение закона Ома.			2		
15. Изучение процесса зарядки и разрядки конденсатора.			2		
16. Закон Ома для однородного участка цепи. Закон Ома для полной цепи. Закон Джоуля-Ленца. Тепловая мощность. Правила Кирхгофа.				36	
4. Модуль 4		•			
1. Раздел 1. Магнитостатика.	6				
2. Индукция магнитного поля. Сила Ампера и сила Лоренца. Закон Био-Савара-Лапласа.					
3. Определение горизонтальной составляющей напряженности магнитного поля Земли.					
4. Индукция магнитного поля. Сила Ампера и сила Лоренца. Закон Био-Савара-Лапласа.				24	
5. Теорема о циркуляции вектора магнитной индукции. Магнитное поле в веществе.					
6. Магнитное поле Земли.					
7. Теорема о циркуляции вектора магнитной индук-ции. Магнитное поле в веществе.				24	
8. Раздел 2. Электромагнитная индукция.	2				

 9. Поток вектора магнитной индукции. Работа магнитного поля. Электромагнитная индукция. Самоиндукция и взаимоиндукция. Энергия магнитного поля. 10. Определение индуктивности катушки. 11. Изучение ферромагнетиков. 12. Поток вектора магнитной индукции. Работа 					
магнитного поля. Электромагнитная индукция. Самоиндукция и взаимоиндукция. Энергия магнитного поля.				18	
13. Контрольная работа					
14.					
5. Модуль 5	 			 -	
1. Раздел 1. Волны. Интерференция, дифракция и поляризация света.					
2. Изучение собственных колебаний струны.					
3. Измерение длины световой волны с помощью дифракционной решетки.					
4. Изучение законов геометрической оптики.		2			
5. Определение расстояния между щелями в опыте Юнга.					
6. Определение радиуса кривизны линзы с помощью колец Ньютона.					
7. Изучение явления интерференции света на примере бипризмы Френеля.					
8. Изучение дифракции от щели. Определение ширины щели.					

9. Волны. Интерференция, дифракция и поляризация света.				18	
10. Раздел 2. Законы теплового излучения.	2				
11. Изучение внешнего фотоэффекта.					
12. Изучение поглощения света веществом.					
13. Изучение плоско-поляризованного света.					
14. Законы теплового излучения.				36	
6. Модуль 6					
1. Раздел 1. Атомная физика и элементы квантовой механики.					
2. Проверка соотношения неопределенностей для фотонов.			2		
3. Рассеяние микрочастиц одномерным прямоугольным потенциальным барьером.					
4. Дифракция микрочастиц на щели.					
5. Атомная физика и элементы квантовой механики.				19	
6. Раздел 2. Ядерная физика.					
7. Изучение оптического квантового генератора.					
8. Ядерная физика.				8	
Всего	23	16	22	426	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Трофимова Т. И. Курс физики: учебное пособие(М.: Издательский центр "Академия").
- 2. Кузнецов С. И. Курс физики с примерами решения задач: учеб. пособие для студентов вузов, обучающихся по технич. направлениям подготовки и специальностям: доп. НМС по физике МО и науки РФ(СПб. [и др.]: Лань).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. Учебно-методическое обеспечение дисциплины «Физика» [Электронный ресурс] : конспекты лекций, лабораторные работы, задачи для специальностей «Инженерные». Красноярск, 2014. Режим доступа: http://lib3.sfu-kras.ru/ft/files/umkd/170/u
- 2. Машукова, А.Е. Курс физики для специалитета. В 3 ч. Ч. 1 [Электронный ресурс] : электронный обучающий курс / А. Е. Машукова // Система электронного обучения СФУ e.sfu-kras.ru. Красноярск, 2014. Режим доступа: http://e.sfu-kras.ru/course/view.php?id=1034.
- 3. Машукова, А.Е. Курс физики для специалитета, В 3 ч. Ч. 2 [Электронный ресурс] : электронный обучающий курс / А. Е. Машукова // Система электронного обучения СФУ e.sfu-kras.ru. Красноярск, 2014. Режим доступа: http://e.sfu-kras.ru/course/view.php?id=1069.
- 4. Машукова, А.Е. Курс физики для специалитета. В 3 ч. Ч. 3 [Электронный ресурс] : электронный обучающий курс / А. Е. Машукова // Система электронного обучения СФУ e.sfu-kras.ru. Красноярск, 2014. Режим доступа: http://e.sfu-kras.ru/course/view.php?id=1062.
- 5. Поисковая система Yandex [Электронный ресурс] : заглавная страница. Режим доступа : www.yandex.ru.
- 6. Поисковая система Google [Электронный ресурс] : заглавная страница. Режим доступа : www.google.ru.
- 7. Медийный портал Rambler [Электронный ресурс] : заглавная страница. Режим доступа :www.rambler.ru.
- 8. Сайт Министерства образования и науки РФ [Электронный ресурс] : заглавная страница. Режим доступа : http://www.mon.gov.ru.
- 9. Государственная универсальная научная библиотека Красноярского края [Электронный ресурс] : официальный сайт. Режим доступа : http://irbis.su.
- 10. Федеральный центр информационно-образовательных ресурсов [Электронный ресурс] : официальный сайт. Режим доступа : http://fcior.edu.ru.

- 11. Естественнонаучный образовательный портал [Электронный ресурс] : официальный сайт. Режим доступа: http://en.edu.ru/.
- 12. Научная электронная библиотека [Электронный ресурс] : официальный сайт. Режим доступа : http://www.elibrary.ru.
- 13. Кафедра и лаборатория физики Московского института открытого образования [Электронный ресурс] : официальный сайт. Режим доступа: http://fizkaf.narod.ru.
- 14. Обзор электронных учебников и учебных пособий по физике [Электронный ресурс] : Бизнес-образование в России: официальный сайт MBA. Режим доступа: http://www.curator.ru/e-books/physics.html
- 15. Открытая Физика [Электронный ресурс] : учебный компьютерный курс по физике. Режим доступа: http://college.ru/physics.
- 16. Обучающая программа по физике «Живая Физика» Физика [Электронный ресурс]: Официальный сайт «Институт новых технологий». Режим доступа: http://www.int-edu.ru/soft/fiz.html.
- 17. Коллекция «Естественнонаучные эксперименты» : физика [Электронный ресурс] : Официальный сайт российского общеобразовательного портала. Режим доступа: http://experiment.edu.ru.
- 18. Заочная физико-техническая школа при МФТИ [Электронный ресурс] : официальный сайт. Режим доступа: http://www.school.mipt.ru.
- 19. Физика в анимациях [Электронный ресурс] : официальный сайт. Режим доступа: http://physics.nad.ru.
- 20. Open access to 942,059 e-prints in Physics, Mathematics, Computer Science, Biology, Quantitative Finance and Statistics [Электронныйресурс]: официальныйсайт Cornell University Library. Режимдоступа: http://arxiv.org.
- 21. Электронный учебно-методический комплекс по физике для студен-тов МЭИ [Электронный ресурс] : официальный сайт. Режим доступа: www.auditoriya.info/index/students fizika/id.488.
- 22. Решения задач по физике из учебника Иродова. Список физических констант [Электронный ресурс] : форумы по учебным материалам http://irodov.nm.ru/
- 23. Физика общеобразовательной школы [Электронный ресурс] : официальный сайт. Режим доступа: http://fizik.bos.ru.
- 24. Высшая физика: Физика с зависимостью заряда от скорости, сверхсветовыми скоростями и без замедления времени [Электронный ресурс] : научно-познавательный сайт Олега Акимова. — Режим доступа: http://www.acmephysics.narod.ru/
- 25. Виртуальный клуб физики «Ньютон» [Электронный ресурс] : официальный сайт. Режим доступа: http://www.edu.ioffe.ru/apple/
- 26. Интерактивный перевод единиц измерений [Электронный ресурс] : официальный сайт. Режим доступа: http://www.convert-me.com/ru/

- 27. Кабинет физики Санкт-Петербургского Университета педагогического мастерства [Электронный ресурс] : официальный сайт. Режим доступа: http://www.edu.delfa.net:8101/
- 28. Оптика: учебное пособие, виртуальная лаборатория, справочноинформационная база [Электронный ресурс] : образовательный сервер. — Режим доступа: http://optics.ifmo.ru.
- 29. Электронный журнал «Физикомп» [Электронный ресурс] : материалы для изучения физики. Режим доступа: http://physicomp.lipetsk.ru/
- 30. Учебные материалы по физике механика, термодинамика, электродинамика, электростатика, оптика, квантовая физика [Электронный ресурс] : электронный консультант по физике. — Режим доступа: http://www.omsknet.ru/acad/fr elect.htm
- 31. Ядерная физика и строение Солнца [Электронный ресурс] : учебник для широкого круга читателей. Режим доступа: http://www.irnet.ru/olezhka2/prosvet/wnuclear/wnuclear.shtml
- 32. Демонстрационный кабинет физики НГУ описания, новые разработки, видеозаписи демонстрационных опытов по разделам физики [Электронный ресурс] : официальный сайт. Режим доступа: http://www.phys.nsu.ru/dkf/
- 33. Дифракция. Интерактивные модели [Электронный ресурс] : Генезис знаний. Режим доступа: http://www.kg.ru/diffraction/

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Поисковая система Yandex [Электронный ресурс] : заглавная страница. Режим доступа : www.yandex.ru.
- 2. Поисковая система Google [Электронный ресурс] : заглавная страница. Режим доступа : www.google.ru.
- 3. Медийный портал Rambler [Электронный ресурс] : заглавная страница. Режим доступа :www.rambler.ru.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Для осуществления образовательного процесса по дисциплине «Физика» в СФУ имеются лекционные аудитории с интерактивной доской и демонстрационным оборудованием и учебные лаборатории:измерительного практикума, механики, молекулярной физики, электричества и магнетизма; оптики, атомной и ядерной физики, оснащенные современными комплексами лабораторных работ и интерактивными досками.

Лаборатории позволяют выполнить 223 лабораторных работы, из которых:92 работы по измерительному практикуму, механике и термодинамике, 52работы по электричеству и магнетизму, 79 работ по оптике, атомной и ядерной физике.

Дисциплина адаптирована для инвалидов и лиц с ограниченными возможностями здоровья, и ее реализация осуществляется с использованием средств обучения общего и специального назначения:

усилительная аппаратура,

аппаратура для визуализации со специальными возможностями средства записи и воспроизведения аудио- и видео-информации системы беспроводной передачи звука (FM-системы) для усиления разборчивости речи преподавателя и других говорящих Брайлевской компьютерной техники

Компьютерных тифлотехнологий, обеспечивающих преобразование компьютерной информации в доступные для незрячих формы (программ-синтезаторов речи, преобразователей в рельефно-точечный или укрупненный текст)